Deterministic Method to Assess Kalman Filter Passive Ranging Solution Reliability

نویسنده

  • Ronald M. Yannone
چکیده

For decades, the defense business has been plagued by not having a reliable, deterministic method to know when the Kalman filter solution for passive ranging application is reliable for use by the fighter pilot. This has made it hard to accurately assess when the ranging solution can be used for situation awareness and weapons use. To date, we have used ad hoc rules-of-thumb to assess when we think the estimate of the Kalman filter standard deviation on range is reliable. A reliable algorithm has been developed at BAE Systems Electronics & Integrated Solutions that monitors the Kalman gain matrix elements – and a patent is pending. The “settling” of the gain matrix elements relates directly to when we can assess the time when the passive ranging solution is within the 10 percent-of-truth value. The focus of the paper is on surface-based passive ranging – but the method is applicable to airborne targets as well. Keywords—Electronic warfare, extended Kalman filter (EKF), fighter aircraft, passive ranging, track convergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Mixture (GM) Passive Localization using Time Difference of Arrival (TDOA)

This paper describes the passive emitter localization using Time Difference of Arrival (TDOA) measurements. It investigates various methods for estimating the solution of this nonlinear problem: the Maximum Likelihood Estimation (ML) as a batch algorithm, the Extended Kalman Filter (EKF) as an analytical approximation, the Unscented Kalman Filter (UKF) as a deterministic sampling approach and f...

متن کامل

Application of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit

In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...

متن کامل

Improving the Reliability of GPS and GLONASS Navigation Solution in Urban Canyons using a Tuned Kalman Filter

Abstract: Urban canyon is categorized as hard environment for positioning of a dynamic vehicle due to low number and also bad configuration of in-view satellites. In this paper, a tuning procedure is proposed to adjust the important factors in Kalman Filter (KF) using Genetic Algorithm (GA). The authors tested the algorithm on a dynamic vehicle in an urban canyon with hard condition and compare...

متن کامل

A Novel Multi-Passive-Sensor Target Tracking Algorithm Based On Gaussian Filter

This paper presents a new multi-passive-sensor target tracking algorithm which yields a nonlinear state estimator called Gaussian filter based on deterministic sampling. Firstly, this state estimator employs a deterministic sample selection scheme, where a parametric density function representation of the sample points is employed to approximate the cumulative distribution function of the prior...

متن کامل

Estimating reliability of blood glucose concentration predictions in patients with type 1 diabetes mellitus

Blood glucose concentrations of patients with type 1 diabetes mellitus are subject to very high interand intra-patient variability. This variability may be detrimental to the reliability of the treatment, thus resulting in potentially frequent hypoor hyperglycemia. Model-based therapies have the potential to improve the quality of the treatment, but most of the well-accepted deterministic model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009